题目内容

2011年4月28日,以“天人长安,创意自然一一城市与自然和谐共生”为主题的世界园艺博览会在西安隆重开园,这次园艺会的门票分为个人票和团体票两大类,其中个人票设置有三种:
票的种类 夜票(A) 平日普通票(B) 指定日普通票(C)
单价(元/张) 60 100 150
某社区居委会为奖励“和谐家庭”,欲购买个人票100张,其中B种票的张数是A种票张数的3倍还多8张,设购买A种票张数为x,C种票张数为y
(1)写出y与x之间的函数关系式;
(2)设购票总费用为W元,求出w(元)与x(张)之间的函数关系式;
(3)若每种票至少购买1张,其中购买A种票不少于20张,则有几种购票方案?并求出购票总费用最少时,购买A,B,C三种票的张数.
分析:(1)根据A、B、C三种票的数量关系列出y与x的函数关系式;
(2)根据三种票的张数、价格分别算出每种票的费用,再算出总数w,即可求出W(元)与X(张)之间的函数关系式;
(3)根据题意求出x的取值范围,根据取值可以确定有三种方案购票,再从函数关系式分析w随x的增大而减小从而求出最值,即购票的费用最少.
解答:解:(1)由题意得,B种票数为:3x+8
则y=100-x-3x-8化简得,y=-4x+92.
即y与x之间的函数关系式为:y=-4x+92;

(2)w=60x+100(3x+8)+150(-4x+92)化简得,
w=-240x+14600
即购票总费用W与X(张)之间的函数关系式为:w=-240x+14600

(3)由题意得
x≥20
92-4x≥1

解得20≤x≤
91
4

∵x是正整数,
∴x可取20、21、22
那么共有3种购票方案.
从函数关系式w=-240x+14600
∵-240<0,
∴w随x的增大而减小,
当x=22时,w的最值最小,即当A票购买22张时,购票的总费用最少.
购票总费用最少时,购买A、B、C三种票的张数分别为22、74、4.
点评:本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网