题目内容
2011年4月28日,以“天人长安,创意自然一一城市与自然和谐共生”为主题的世界园艺博览会在西安隆重开园,这次园艺会的门票分为个人票和团体票两大类,其中个人票设置有三种:| 票的种类 | 夜票(A) | 平日普通票(B) | 指定日普通票(C) |
| 单价(元/张) | 60 | 100 | 150 |
(1)写出y与x之间的函数关系式;
(2)设购票总费用为W元,求出w(元)与x(张)之间的函数关系式;
(3)若每种票至少购买1张,其中购买A种票不少于20张,则有几种购票方案?并求出购票总费用最少时,购买A,B,C三种票的张数.
分析:(1)根据A、B、C三种票的数量关系列出y与x的函数关系式;
(2)根据三种票的张数、价格分别算出每种票的费用,再算出总数w,即可求出W(元)与X(张)之间的函数关系式;
(3)根据题意求出x的取值范围,根据取值可以确定有三种方案购票,再从函数关系式分析w随x的增大而减小从而求出最值,即购票的费用最少.
(2)根据三种票的张数、价格分别算出每种票的费用,再算出总数w,即可求出W(元)与X(张)之间的函数关系式;
(3)根据题意求出x的取值范围,根据取值可以确定有三种方案购票,再从函数关系式分析w随x的增大而减小从而求出最值,即购票的费用最少.
解答:解:(1)由题意得,B种票数为:3x+8
则y=100-x-3x-8化简得,y=-4x+92.
即y与x之间的函数关系式为:y=-4x+92;
(2)w=60x+100(3x+8)+150(-4x+92)化简得,
w=-240x+14600
即购票总费用W与X(张)之间的函数关系式为:w=-240x+14600
(3)由题意得
,
解得20≤x≤
,
∵x是正整数,
∴x可取20、21、22
那么共有3种购票方案.
从函数关系式w=-240x+14600
∵-240<0,
∴w随x的增大而减小,
当x=22时,w的最值最小,即当A票购买22张时,购票的总费用最少.
购票总费用最少时,购买A、B、C三种票的张数分别为22、74、4.
则y=100-x-3x-8化简得,y=-4x+92.
即y与x之间的函数关系式为:y=-4x+92;
(2)w=60x+100(3x+8)+150(-4x+92)化简得,
w=-240x+14600
即购票总费用W与X(张)之间的函数关系式为:w=-240x+14600
(3)由题意得
|
解得20≤x≤
| 91 |
| 4 |
∵x是正整数,
∴x可取20、21、22
那么共有3种购票方案.
从函数关系式w=-240x+14600
∵-240<0,
∴w随x的增大而减小,
当x=22时,w的最值最小,即当A票购买22张时,购票的总费用最少.
购票总费用最少时,购买A、B、C三种票的张数分别为22、74、4.
点评:本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.
练习册系列答案
相关题目