题目内容
抛物线y=ax2+bx+c中,已知a∶b∶c=l∶2∶3,最小值为6,则此抛物线的解析式为___.
“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行.某自行车店在销售某型号自行车时,以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.
(1)求该型号自行车的进价和标价分别是多少元?
(2)若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出51辆;若每辆自行车每降价20元,每月可多售出3辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?
已知多项式2x2+4xy﹣3y2+x2+kxy+5y2,当k为何值时,它与多项式3x2+6xy+2y2是相等的多项式.
代数式4x3–3x3y+8x2y+3x3+3x3y–8x2y–7x3的值
A. 与x,y有关 B. 与x有关
C. 与y有关 D. 与x,y无关
已知:抛物线经过B(3,0)、C(0,3)两点,顶点为A.
求:(1)抛物线的表达式;
(2)顶点A的坐标.
某国际帆船中心外形形状是一个三角形,要在它的内部修建一处公共服务设施(用点P表示),使它到三条路AB、BC、AC的距离相等.
(1)在图中确定公共服务设施P的位置.(不写作法,保留作图痕迹)
(2)若∠BAC=78°,试求∠BPC的度数.
如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=15,BD:CD=3:2,则点D到AB 的距离是________.
用长度一定的绳子围成一个矩形,如果矩形的一边长与面积满足函数关系式,则当矩形面积最大时,矩形的一条对角线长为________.
如图,在中,点是边上的一个动点,过点作直线,设交的平
分线于点,交的外角平分线于点.
求证:;
当点运动到何处时,四边形是矩形?为什么?
进行怎样的变化才能使边上存在点,使四边形是正方形?为什么?