题目内容
分解因式:2a2-8b2= .
如图,直线y=x+1分别与x轴、y轴相交于点A、B,以点A为圆心,AB长为半径画弧交x轴于点A1,再过点A1作x轴的垂线交直线于点 B1,以点A为圆心,AB1长为半径画弧交x轴于点A2,……,按此做法进行下去,则点A8的坐标是
A.(15,0) B.(16,0) C.(8,0) D.(,0)
已知一个口袋中装有六个完全相同的小球,小球上分别标有0,3,6,9,12,15六个数,搅匀后一次从中摸出一个小球,将小球上的数记为a,则使得一次函数y=(5-a)x+a经过一、二、四象限且关于x的分式方程的解为整数的概率是
已知:如图所示,抛物线y=-x2+bx+c与x轴的两个交点分别为A(1,0),B(3,0).
(1)求抛物线的解析式;
(2)设点P在该抛物线上滑动,且满足条件S△PAB=1的点P有几个?并求出所有点P的坐标;
(3)设抛物线交y轴于点C,问该抛物线对称轴上是否存在点M,使得△MAC的周长最小?若存在,求出点M的坐标;若不存在,请说明理由.
已知x=,求代数式的值.
不等式组的解集在数轴上表示正确的是()
在菱形ABCD中,∠BAD是锐角,AC,BD相交于点O,E是BD的延长线上一动点(不与点D重合),连接EC并延长和AB的延长线交于点F,连接AE.
(1)比较∠F和∠ABD的大小,并说明理由;
(2)当△BFC有一个内角是直角时,求证:△BFC∽△EFA;
(3)当△BFC与△EFA相似(两三角形的公共角为对应角),且AC=12,DE=5时,求△BFC与△EFA的相似比.
如图,扇形折扇完全打开后,如果张开的角度(∠BAC)为120°,骨柄AB的长为,扇面的宽度BD的长为,那么这把折扇的扇面面积为( )
A. B. C. D.
计算:tan30°