题目内容
先化简,再求值:,其中.
如图,已知直线a,b被直线c所截,若a∥b,∠1=110°,∠2=40°,则∠3=( )
A. 40° B. 50° C. 60° D. 70°
为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:
(1)扇形统计图中m的值为 ,n的值为 ;
(2)补全条形统计图;
(3)在选择B类的学生中,甲、乙、丙三人在乒乓球项目表现突出,现决定从这三名同学中任选两名参加市里组织的乒乓球比赛,选中甲同学的概率是 .
下列各数中,最小的数是( )
A. -3 B. |-2| C. (-3)2 D. 2×10-5
如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.
(1)求证:四边形DEFG是平行四边形;
(2)如果∠OBC=45°,∠OCB=30°,OC=4,求EF的长.
某中学初三年级的学生开展测量物体高度的实践活动,他们要测量一幢建筑物AB的高度.如图,他们先在点C处测得建筑物AB的顶点A的仰角为30°,然后向建筑物AB前进10m到达点D处,又测得点A的仰角为60°,那么建筑物AB的高度是________ m.
如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2等于( )
A. 30° B. 40° C. 45° D. 60°
如图,已知矩形ABCD的对角线AC、BD交于O点,∠ABC的平分线交AC于E,交CD于F,∠DBF=15°,连结OF,则下列三角形①△AOD,②△COF,③△DOF,④△EOF中是等腰三角形的为________(填入序号)。
已知,如图1:抛物线 交轴于、两点,交轴于点,对称轴为直线,且过点.
(1)求出抛物线的解析式及点坐标,
(2)点, ,作直线交抛物线于另一点,点是直线下方抛物线上的点,连接、,求的面积的最大值,并求出此时点的坐标;
(3)点、是抛物线对称轴上的两点,且已知(, ),(, ),当为何值时,四边形周长最小?并求出四边形周长的最小值,请说明理由.