题目内容
如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.
(1)求y关于x的函数关系式;
(2)若m=8,求x为何值时,y的值最大,最大值是多少?
(3)若y=
,要使△DEF为等腰三角形,m的值应为多少?
解:(1)∵EF⊥DE,
∴∠BEF=90°﹣∠CED=∠CDE,
又∠B=∠C=90°,
∴△BEF∽△CDE,
∴
=
,即=
,解得y=
;
(2)由(1)得y=
,
将m=8代入,得y=﹣x2+x=﹣(x2﹣8x)=﹣(x﹣4)2+2,
所以当x=4时,y取得最大值为2;
(3)∵∠DEF=90°,∴只有当DE=EF时,△DEF为等腰三角形,
∴△BEF≌△CDE,
∴BE=CD=m,
此时m=8﹣x,解方程
=
,得x=6,或x=2,
当x=2时,m=6,
当x=6时,m=2.
练习册系列答案
相关题目