题目内容
分析:作点A关于CD的对称点A′,连接A′B,则A′B的长即为AP+BP的最小值,过点B作BE⊥AC,垂足为E,则CE=BD,CD=BE,再利用勾股定理求出A′B的长即可.
解答:
解:作点A关于CD的对称点A′,连接A′B,则A′B的长即为AP+BP的最小值,过点B作BE⊥AC,垂足为E,
∵CD=600m,BD=300m,AC=500m,
∴A′C=AC=500m,CE=BD=300m,CD=BE=600m,
∴A′E=A′C+CE=500+300=800m,
在Rt△A′EB中,
A′B=
=
=1000(m).
即牧童最少要走1000米.
故选:B.
∵CD=600m,BD=300m,AC=500m,
∴A′C=AC=500m,CE=BD=300m,CD=BE=600m,
∴A′E=A′C+CE=500+300=800m,
在Rt△A′EB中,
A′B=
| A′E2+BE2 |
| 8002+6002 |
即牧童最少要走1000米.
故选:B.
点评:本题考查的是轴对称-最短路线问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
练习册系列答案
相关题目
A、100
| ||
| B、1200m | ||
| C、1300m | ||
| D、1700m |