题目内容

如图所示,⊙O的弦AB、AC的夹角为50°,MN分别为弧AB和弧AC的中点,OM、ON分别交AB、AC于点E、F,则∠MON的度数为


  1. A.
    110°
  2. B.
    120°
  3. C.
    130°
  4. D.
    100°
C
分析:根据垂径定理的推论,OM平分弧AB,则OM⊥AB,同理ON⊥AC,在四边形OEAF中利用四边形的内角和定理即可求解.
解答:∵M、N分别为弧AB和弧AC的中点,
∴OF⊥AC,OE⊥AB,
∴∠OFA=∠OEA=90°,
∴在四边形OEAF中,∠MON=360°-∠OFA-∠OEA-∠A=360°-90°-90°-50°=130°.
故选C.
点评:本题考查了垂径定理及其推论,正确理解定理是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网