题目内容
【题目】已知:直线
与
轴、
轴分别相交于点
和点
,点
在线段
上.将
沿
折叠后,点
恰好落在
边上点
处.
(1)直接写出点
、点
的坐标:
(2)求
的长;
(3)点
为平面内一动点,且满足以
、
、
、
为顶点的四边形为平行四边形,请直接回答:
①符合要求的
点有几个?
②写出一个符合要求的
点坐标.
![]()
【答案】(1)A(-8,0)、B(0,6);(2)5;(3)①3个;②(-5,6)或(-11,-6)或(5,6).
【解析】
(1)利用待定系数法解决问题即可.
(2)由翻折不变性可知,OC=CD,OB=BD=6,∠ODB=∠BOC=90°,推出AD=AB-BD=4,设CD=OC=x,在Rt△ADC中,根据AD2+CD2=AC2,构建方程即可解决问题.
(3)①根据平行四边形的定义画出图形即可判断.
②利用平行四边形的性质求解即可解决问题.
解:(1)对于直线
,令x=0,得到y=6,
∴B(0,6),
令y=0,得到x=
,
∴A(
,0);
(2)∵A(
,0),B(0,6),
∴OA=8,OB=6,
∵∠AOB=90°,
∴
,
由翻折不变性可知,OC=CD,OB=BD=6,∠ODB=∠BOC=90°,
∴AD=AB-BD=4,设CD=OC=x,
在Rt△ADC中,∵∠ADC=90°,
∴AD2+CD2=AC2,
∴42+x2=(8-x)2,
解得:x=3,
∴OC=3,AC=OA
OC=8
3=5.
(3)①符合条件的点P有3个,如图所示:
②∵A(-8,0),C(-3,0),B(0,6),
当AB为对角线时,
,
由平行四边形的性质,得
,
∴P1(-5,6);
当AB为边时,
,点P在第三象限时,有
点B向下平移6个单位,向左平移3个单位得到点C,
∴点A向下平移6个单位,向左平移3个单位得到点P2,
∴P2(-11,-6);
点P在第二象限时,有
,
∴P3(5,6);
∴点P的坐标为:(-5,6)或(-11,-6)或(5,6).
【题目】某班“数学兴趣小组”对函数y=﹣x2+2|x|+1的图象和性质进行了探究,探究过程如下,请补充完整.
(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:
x | … | ﹣3 | ﹣ | ﹣2 | ﹣1 | 0 | 1 | 2 |
| 3 | … |
y | … | ﹣2 | ﹣ | m | 2 | 1 | 2 | 1 | ﹣ | ﹣2 | … |
其中,m= .
(2)根据上表数据,在如图所示的平面直角坐标系中描点,画出了函数图象的一部分,请画出该函数图象的另一部分.
(3)观察函数图象,写出两条函数的性质.
(4)进一步探究函数图象发现:
①方程﹣x2+2|x|+1=0有 个实数根;
②关于x的方程﹣x2+2|x|+1=
![]()