题目内容


甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.

(1)求从袋中随机摸出一球,标号是1的概率;

(2)从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.


解:(1)∵三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,

∴从袋中随机摸出一球,标号是1的概率为:

 

(2)这个游戏不公平.

画树状图得:

∵共有9种等可能的结果,两次摸出的球的标号之和为偶数的有5种情况,两次摸出的球的标号之和为奇数的有4种情况,

∴P(甲胜)=,P(乙胜)=

∴P(甲胜)≠P(乙胜),

∴这个游戏不公平.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网