题目内容
现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1、2、3、4、5、6),小明用掷A立方体朝上的数字为x,掷B立方体朝上的数字为y来确定点P(x,y),则小明各掷一次确定的点P落在已知抛物线y=-x2+4x+3上的概率是________.
分析:依据题意先用列表法或画树状图法分析所有等可能的出现结果,求得小明各掷一次确定的点P落在已知抛物线y=-x2+4x+3上的情况数,然后根据概率公式即可求出该事件的概率.
解答:列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)∴一共有36种等可能的结果,
小明各掷一次确定的点P落在已知抛物线y=-x2+4x+3上的有(1,6),(3,6),(4,3)共3种,
∴小明各掷一次确定的点P落在已知抛物线y=-x2+4x+3上的概率是
故答案为:
点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
练习册系列答案
相关题目
(课改)现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A立方体朝上的数字为x小明掷B立方体朝上的数字为y来确定点P(x,y),那么它们各掷一次所确定的点P落在已知抛物线y=-x2+4x上的概率为( )
A、
| ||
B、
| ||
C、
| ||
D、
|
现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A立方体朝上的数字为x、小明掷B立方体朝上的数字为y来确定点P(x,y),那么他们各掷一次所确定的点P落在双曲线y=
上的概率为( )
| 6 |
| x |
A、
| ||
B、
| ||
C、
| ||
D、
|
现有A、B两枚均匀的小立方体骰子(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A立方体朝上的数字为x、小明掷B立方体朝上的数字为y来确定点P(x,y),那么它们各掷一次所确定的点P落在已知直线y=2x上的概率为( )
A、
| ||
B、
| ||
C、
| ||
D、
|