题目内容
如图,Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,将△ABC折叠,使点C与点A重合,折痕为DE,求CE的长.

∵AB=3cm,AC=5cm,
∴根据勾股定理得BC=4cm,
由折叠的性质知,AE=CE,
设AE=CE=x,
则BE=(4-x)
在Rt△ABE中,
AB2+BE2=AE2
即:32+(4-x)2=x2
解得:x=
.
所以CE的长为
cm.
∴根据勾股定理得BC=4cm,
由折叠的性质知,AE=CE,
设AE=CE=x,
则BE=(4-x)
在Rt△ABE中,
AB2+BE2=AE2
即:32+(4-x)2=x2
解得:x=
| 25 |
| 8 |
所以CE的长为
| 25 |
| 8 |
练习册系列答案
相关题目