题目内容
| 2 | 3 |
(1)求EF:FD与CG:AG;
(2)若FG=GD-3,试求EF的长.
分析:(1)通过△BEF∽△AED的对应边成比例得到:
=
,则
=
=
,即EF:FD=2:3;同理由△FCG∽△DAG的对应边成比例求得CG:AG=3:5;
(2)由△FCG∽△DAG,得到:
=
=
,易求GD=7.5,故FG=4.5,则FD=12.所以由
=
求得EF=8.
| EF |
| ED |
| EB |
| EA |
| EF |
| FD |
| BE |
| BA |
| 2 |
| 3 |
(2)由△FCG∽△DAG,得到:
| CG |
| AG |
| FG |
| GD |
| 3 |
| 5 |
| EF |
| FD |
| 2 |
| 3 |
解答:解:(1)如图,
∵四边形ABCD是平行四边形,
∴BC∥AD,BC=AD,
∴△BEF∽△AED,△FCG∽△DAG,
∴
=
=
=
,
=
,
∴
=
=
,即EF:FD=2:3;
=
=
=
=
=
,即CG:AG=3:5;
(2)由△FCG∽△DAG,得到:
=
=
,
∵FG=GD-3,
∴
=
,则GD=7.5,
∴FG=4.5,
∴FD=12.
∵
=
,
∴EF=8.
∵四边形ABCD是平行四边形,
∴BC∥AD,BC=AD,
∴△BEF∽△AED,△FCG∽△DAG,
∴
| EF |
| ED |
| EB |
| EA |
| BF |
| AD |
| 2 |
| 5 |
| CG |
| AG |
| FC |
| AD |
∴
| EF |
| FD |
| BE |
| BA |
| 2 |
| 3 |
| CG |
| AG |
| FC |
| AD |
| BC-BF |
| AD |
AD-
| ||
| AD |
AD-
| ||
| AD |
| 3 |
| 5 |
(2)由△FCG∽△DAG,得到:
| CG |
| AG |
| FG |
| GD |
| 3 |
| 5 |
∵FG=GD-3,
∴
| GD-3 |
| GD |
| 3 |
| 5 |
∴FG=4.5,
∴FD=12.
∵
| EF |
| FD |
| 2 |
| 3 |
∴EF=8.
点评:本题考查了平行四边形的性质,相似三角形的判定与性质.相似三角形相似多边形的特殊情形,它沿袭相似多边形的定义,从对应边的比相等和对应角相等两方面下定义;反过来,两个三角形相似也有对应角相等,对应边的比相等.
练习册系列答案
相关题目