题目内容
【题目】已知P为⊙O外一点,PA、PB分别切⊙O于A、B两点,点C为⊙O上一点.
(1)如图1,若AC为直径,求证:OP∥BC;
(2)如图2,若sin∠P=
,求tanC的值.
![]()
【答案】(1)证明见解析;(2)
.
【解析】试题分析:(1)连接AB交PO于M,根据切线性质得出PA=PB,OP平分∠APB,推出∠AMO=90°,根据平行线的判定推出即可;
(2)求出∠E=∠C,求出∠E=∠PBA,解直角三角形求出即可.
试题解析:(1)证明:连接AB交PO于M,
∵PA、PB分别切⊙O于A、B两点,
∴PA=PB,OP平分∠APB,
∴AB⊥OP,
∴∠AMO=90°,
∵AC为直径,
∴∠ABC=90°,
∴∠AMO=∠ABC,
∴OP∥BC;
![]()
(2)连接AB,过A作AD⊥PB于D,作直径BE,连接AE,
∵PB为⊙O的切线,
∴BE⊥PB,
∴∠PBA+∠ABE=90°,
∵BE为直径,
∴∠BAE=90°,
∴∠E+∠ABE=90°,
∴∠E=∠ABP,
∵∠E=∠C,
∴∠C=∠ABP,
∵sin∠P=
,
∴设AD=12x,则PA=13x,PD=5x,
∴BD=8x,
∴tan∠ABD=
,
∴tan∠C=
.
【题目】探究逼近
的有理近似值.
方法介绍:
经过
步操作(
为正整数)不断寻找有理数
,
,使得
,并且让
的值越来越小,同时利用数轴工具将任务几何化,直观理解通过等分线段的方法不断缩小
对应的点
所在线段的长度(二分法)
思路
在数轴上记
,
对应的点分别为
,
和
的平均数
对应线段
的中点(记为
).通过判断
还是
,得到点
是在二等分后的“左线段
”上还是“右线段
”上,重复上述步骤,不断得到
,从而得到
更精确的近似值.
具体操作步骤及填写“阅读活动任务单”:
(1)当
时,
①寻找左右界值:先寻找两个连续正整数
,使得
.
因为
,所以
,那么
,
,线段
的中点
对应的数
.
②二分定位:判断点
在“左线段
”上还是在“右线段
”上.
比较7与
的大小,从而确定
与
的大小;
因为
>
(填 “>”或“<”),得到点
在线段
上(填“
”或“
”).
(2)当
时,在(1)中所得
的基础上,仿照以上步骤,继续进行下去,得到表中
时的相应内容.
请继续仿照以上步骤操作下去,补全“阅读活动任务单”:
|
|
|
|
| 点 | 得出更精确的 |
1 | 2 | 3 | 2.5 |
| 点 |
|
2 | 2.5 | 3 | 2.75 |
| 点 |
|
3 | 2.5 | 2.75 | 2.625 |
| ||
4 |