题目内容
化简:
(1)化简
+
(2)先化简,再求值.已知x=-
,求(
-1)÷
的值.
(1)化简
| 2a |
| a2-4 |
| 1 |
| 2-a |
(2)先化简,再求值.已知x=-
| 1 |
| 2 |
| 3 |
| x-1 |
| x-4 |
| x2-2x+1 |
分析:(1)先把分式的分母进行因式分解,然后再通分,最后再把分子和分母进行约分,即可求出答案;
(2)先通分,再把括号去掉,然后把除法转化成乘法,再把分子和分母进行化简,然后把给定的值代入求值.
(2)先通分,再把括号去掉,然后把除法转化成乘法,再把分子和分母进行化简,然后把给定的值代入求值.
解答:解:(1)
+
=
-
=
-
=
=
=
;
(2)(
-1)÷
=(
-
)×
=
=-(x-1)=1-x,
把x=-
代入原式得:
原式=1-(-
)=
;
| 2a |
| a2-4 |
| 1 |
| 2-a |
| 2a |
| (a+2)(a-2) |
| 1 |
| a-2 |
| 2a |
| (a+2)(a-2) |
| a+2 |
| (a+2)(a-2) |
| 2a-a-2 |
| (a+2)(a-2) |
| a-2 |
| (a+2)(a-2) |
| 1 |
| a+2 |
(2)(
| 3 |
| x-1 |
| x-4 |
| x2-2x+1 |
| 3 |
| x-1 |
| x-1 |
| x-1 |
| (x-1) 2 |
| x-4 |
| 4-x |
| x-1 |
| (x-1) 2 |
| x-4 |
把x=-
| 1 |
| 2 |
原式=1-(-
| 1 |
| 2 |
| 3 |
| 2 |
点评:本题考查了分式的化简求值.分式的加减运算实际上就是先通分,再把分子与分母进行约分,这是各地中考的常考点.
练习册系列答案
相关题目