题目内容
如图,直线y=﹣2x+2与x轴y轴分别相交于点A、B,四边形ABCD是正方形,曲线y=在第一象限经过点D.则k= .
如图,反比例函数y=的图象经过点M,则此反比例函数的解析式为( )
A.y=- B.y= C.y=- D.y=
一个水池装一个进水管和三个同样的出水管.先打开进水管,等水池储存一些水后,再打开出水管(进水管不关闭).若同时打开2个进水管,那么5小时后水池空;若同时打开3个出水管,则3小时后水池空.那么出水管比进水管晚开 小时.
若分式有意义,则a的取值范围是( )
A.a=0 B.a=1 C.a≠﹣1 D.a≠0
如图,在正方形网格中,△OBC的顶点分别为O(0,0),B(3,﹣1)、C(2,1).
(1)以点O(0,0)为位似中心,按比例尺2:1在位似中心的异侧将△OBC放大为△OB′C′,放大后点B、C两点的对应点分别为B′、C′,画出△OB′C′,并写出点B′、C′的坐标:B′( , ),C′( , );
(2)在(1)中,若点M(x,y)为线段BC上任一点,写出变化后点M的对应点M′的坐标( , ).
某一时刻,身高1.6m的小明在阳光下的影长是0.4m,同一时刻同一地点测得旗杆的影长是5m,则该旗杆的高度是 m.
如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD的长为( )
A.4 B.16 C.2 D.4
(3分)把下面四个图形拼成一个大长方形,并据此写出一个多项式的因式分解 .
已知:如图,AB为⊙O的直径,C、D是⊙O上两点,BD平分∠ABC,BC的延长线与过点D的直线交于点H,且BH⊥DH.
(1)求证:DH是⊙O的切线.
(2)如果AB=10,BC=8,求圆心O到BC的距离.