ÌâÄ¿ÄÚÈÝ
13£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬µãAÔÚxÖáÉÏ£¬ÇÒOA=BA=2£¬¡ÏOAB=120¡ã£¬µãN´ÓO³ö·¢£¬ÒÔÿÃë1¸öµ¥Î»µÃËÙ¶ÈÑØO¡úA¡úBÏòBÔ˶¯£¬µãM´ÓB³ö·¢£¬ÒÔÿÃë$\sqrt{3}$¸öµ¥Î»µÄËÙ¶ÈÑØB¡úO¡úyÖáÕý°ëÖáÔ˶¯£¬M¡¢Nͬʱ³ö·¢£¬µ±µãNµ½´ïµãBʱÁ½µãͬʱֹͣÔ˶¯£¬ÉèÔ˶¯Ê±¼äΪt£¬¡÷OMNµÄÃæ»ýΪS£®£¨1£©ÇóµãBµÄ×ø±ê²¢Çó³öÖ±ÏßABµÄ½âÎöʽ£®
£¨2£©ÇëÖ±½Óд³öSÓëtµÄº¯Êý¹ØÏµÊ½²¢Ð´³ö×Ô±äÁ¿tµÄȡֵ·¶Î§£®
£¨3£©µ±µãMÔÚÏß¶ÎBOÉÏÔ˶¯Ê±£¬¡÷OMNÊÇ·ñ¿ÉÄܳÉΪµÈÑüÈý½ÇÐΣ¿Èç¹û¿ÉÄÜ£¬Çó³ö´ËʱtµÄÖµ£»Èç¹û²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©¸ù¾ÝÈñ½ÇÈý½Çº¯Êý£¬¿ÉµÃAD£¬BD£¬¸ù¾ÝÏ߶εĺͲ¿ÉµÃBµã×ø±ê£»¸ù¾Ý´ý¶¨ÏµÊý·¨£¬¿ÉµÃ´ð°¸£»
£¨2£©·ÖÀàÌÖÂÛ£º¢Ùµ±0£¼t¡Ü2ʱ£¬¸ù¾ÝÏ߶εĺͲ¿ÉµÃOMµÄ³¤£¬¸ù¾ÝÈñ½ÇÈý½Çº¯Êý£¬¿ÉµÃMµÄ×Ý×ø±ê£¬¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½£¬¿ÉµÃ´ð°¸£»¢Úµ±2£¼t¡Ü4ʱ£¬¸ù¾ÝÈñ½ÇÈý½Çº¯Êý£¬Ï߶εĺͲ¿ÉµÃNµãµÄºá×ø±ê£¬¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½£¬¿ÉµÃ´ð°¸£»
£¨3£©¸ù¾ÝµÈÑüÈý½ÇÐε͍Ò壬¿ÉµÃ¹ØÓÚtµÄ·½³Ì£¬¸ù¾Ý½â·½³Ì£¬¿ÉµÃ´ð°¸£®
½â´ð ½â£º£¨1£©Èçͼ1£º![]()
×÷BD¡ÍOAÓÚDµã£®
ÓÉOA=BA=2£¬¡ÏOAB=120¡ã£¬µÃ
¡ÏBAD=60¡ã£®
AD=AB•cos¡ÏBAD=2¡Á$\frac{1}{2}$=1£¬OD=OA+AD=3£¬
BD=ABisn¡ÏBAD=2¡Ásin60¡ã=2¡Á$\frac{\sqrt{3}}{2}$=$\sqrt{3}$£¬
Bµã×ø±êΪ£¨3£¬$\sqrt{3}$£©£®
ÉèABµÄ½âÎöʽΪy=kx+b£¬½«A¡¢Bµã×ø±ê´úÈ룬µÃ
$\left\{\begin{array}{l}{2k+b=0}\\{3k+b=\sqrt{3}}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{k=\frac{\sqrt{3}}{3}}\\{b=-\frac{2\sqrt{3}}{3}}\end{array}\right.$£¬
Ö±ÏßABµÄ½âÎöʽΪy=$\frac{\sqrt{3}}{3}$x-$\frac{2\sqrt{3}}{3}$£»
£¨2£©¢Ùµ±0£¼t¡Ü2ʱ£¬ON=t£¬BM=$\sqrt{3}$t£¬OM=2$\sqrt{3}$-$\sqrt{3}$t£¬
yM=OM•sin¡ÏBOA=£¨2$\sqrt{3}$-$\sqrt{3}$t£©sin30¡ã=$\sqrt{3}$-$\frac{\sqrt{3}}{2}$t£®
S=$\frac{1}{2}$ON•yM=$\frac{1}{2}$•t•£¨$\sqrt{3}$-$\frac{\sqrt{3}}{2}$t£©=-$\frac{\sqrt{3}}{4}$t2+$\frac{\sqrt{3}}{2}$t£¬
¢Úµ±2£¼t¡Ü4ʱ£¬ON=t-2£¬OM=$\sqrt{3}$t-2$\sqrt{3}$£¬xN=£¨t-2£©cos¡ÏBAD+2=$\frac{1}{2}$£¨t-2£©+2=$\frac{1}{2}$t+1£®
S=$\frac{1}{2}$OM•xN=$\frac{1}{2}$£¨$\sqrt{3}$t-2$\sqrt{3}$£©•£¨$\frac{1}{2}$t+1£©=$\frac{\sqrt{3}}{4}$t2-$\sqrt{3}$£¬
×ÛÉÏËùÊö£ºS=$\left\{\begin{array}{l}{-\frac{\sqrt{3}}{4}{t}^{2}+\frac{\sqrt{3}}{2}t£¨0£¼t¡Ü2£©}\\{\frac{\sqrt{3}}{4}{t}^{2}-\sqrt{3}£¨2£¼t¡Ü4£©}\end{array}\right.$£»
£¨3£©OM=2$\sqrt{3}$-$\sqrt{3}$t£¬ON=t£¬
µ±OM=ONʱ£¬2$\sqrt{3}$-$\sqrt{3}$t=t£¬½âµÃt=3-$\sqrt{3}$£»
µ±ON=MNʱ£¬$\frac{OM}{OB}$=$\frac{ON}{OA}$£¬¼´$\frac{2\sqrt{3}-\sqrt{3}t}{2\sqrt{3}}$=$\frac{t}{2}$£¬½âµÃt=1£»
µ±OM=MNʱ£¬MO•cos¡ÏMON=$\frac{1}{2}$ON£¬¼´£¨2$\sqrt{3}$-$\sqrt{3}$t£©cos30¡ã=$\frac{1}{2}$t£¬
½âµÃt=$\frac{3}{2}$£»
×ÛÉÏËùÊö£ºµ±µãMÔÚÏß¶ÎBOÉÏÔ˶¯Ê±£¬¡÷OMNÄܳÉΪµÈÑüÈý½ÇÐΣ¬´ËʱtµÄÖµt1=3-$\sqrt{3}$£¬t2=1£¬t3=$\frac{3}{2}$£®
µãÆÀ ±¾Ì⿼²éÁËÒ»´Îº¯Êý×ÛºÏÌ⣬£¨1£©ÀûÓÃÈñ½ÇÈý½Çº¯Êý£¬Ï߶εĺͲîµÃ³öBµã×ø±êÊǽâÌâ¹Ø¼ü£»£¨2£©ÀûÓÃÈñ½ÇÈý½Çº¯ÊýµÃ³öyM£¬xNÊǽâÌâ¹Ø¼ü£»£¨3£©ÀûÓõÈÑüÈý½ÇÐε͍ÒåµÃ³ö¹ØÓÚtµÄ·½³ÌÊǽâÌâ¹Ø¼ü£¬Òª·ÖÀàÌÖÂÛ£¬ÒÔ·ÀÒÅ©£®
| A£® | x+2y=0 | B£® | x2+3x+2=0 | C£® | 2x-3=$\frac{1}{x}$+2 | D£® | x+1=0 |