题目内容
附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.
求 的值.
八年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为km/h,则所列方程正确的是( )
A. B.
C. D.
已知,如图1,AD是△ABC的角平分线,且AD=BD,
(1)求证:△CDA∽△CAB;
(2)若AD=6,CD=5,求AC的值;
(3)如图2,延长AD至E,使AE=AB,过E点作EF∥AB,交AC于点F,试探究线段EF
与线段AD的大小关系.
将下列多项式因式分解,结果中不含有因式(a+1)的是( )
A. a2-1
B. a2+a
C. a2+a-2
D. (a+2)2-2(a+2)+1
如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE于F,设PA=x.
(1)求证:△PFA∽△ABE;
(2)当点P在线段AD上运动时,设PA=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;
(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x满足的条件: .
备用图
计算:=_____.
已知AC⊥BC于C,BC=a,CA=b,AB=c,下列图形中⊙O与△ABC的某两条边或三边所在的直线相切,则⊙O的半径为的是( )
A. B. C. D.
已知抛物线y=﹣x2+2x+2.
(1)写出它的开口方向、对称轴和顶点坐标;
(2)在如图3的直角坐标系内画出y=﹣x2+2x+2的图象.
如图,抛物线y=﹣x2+bx+c与直线y=x+3交x轴负半轴于点A,交y轴于点C,交x轴正半轴于点B.
(1)求抛物线的解析式;
(2)点P为抛物线上任意一点,设点P的横坐标为x.
①若点P在第二象限,过点P作PN⊥x轴于N,交直线AC于点M,求线段PM关于x的函数解析式,并求出PM的最大值;
②若点P是抛物线上任意一点,连接CP,以CP为边作正方形CPEF,当点E落在抛物线的对称轴上时,请直接写出此时点P的坐标.