题目内容
如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.
(1)求证:△BCD≌△FCE;
(2)若EF∥CD,求∠BDC的度数.
![]()
(1)证明:∵将线段CD绕点C按顺时针方向旋转90°后得CE,
∴CD=CE,∠DCE=90°,
∵∠ACB=90°,
∴∠BCD=90°﹣∠ACD=∠FCE,
在△BCD和△FCE中,
,
∴△BCD≌△FCE(SAS).
(2)解:由(1)可知△BCD≌△FCE,
∴∠BDC=∠E,
∵EF∥CD,
∴∠E=180°﹣∠DCE=90°,
∴∠BDC=90°.
练习册系列答案
相关题目
为了解九年级学生的视力情况,某校随机抽取50名学生进行视力检查,结果如下:
| 视力 | 4.6以下 | 4.6 | 4.7 | 4.8 | 4.9 | 5.0 | 5.0以上 |
| 人数(人) | 6 | 15 | 5 | 10 | 3 | 4 | 7 |
这组数据的中位数是( ).
A.4.6 B.4.7 C.4.8 D.4.9