题目内容
计算(2+1)(22+1)(24+1)(28+1)(216+1)+1的结果是( )
分析:首先将(2+1)(22+1)(24+1)(28+1)(216+1)乘以(2-1),利用平方差公式求解,即可求得232-1+1,继而求得答案.
解答:解:(2+1)(22+1)(24+1)(28+1)(216+1)+1
=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)+1
=(22-1)(22+1)(24+1)(28+1)(216+1)+1
=(24-1)(24+1)(28+1)(216+1)+1
=(28-1)(28+1)(216+1)+1
=(216-1)(216+1)+1
=232-1+1
=232.
故选A.
=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)+1
=(22-1)(22+1)(24+1)(28+1)(216+1)+1
=(24-1)(24+1)(28+1)(216+1)+1
=(28-1)(28+1)(216+1)+1
=(216-1)(216+1)+1
=232-1+1
=232.
故选A.
点评:此题考查了平方差公式的应用.注意掌握平方差公式:(a+b)(a-b)=a2-b2.
练习册系列答案
相关题目