题目内容
若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1-ac,N=(ax0+1)2,则M与N的大小关系正确的为( )
A. M>N B. M=N C. M<N D. 不确定
=_________.
如图,在⊙O上依次取点A、B、C、D、E,测得∠A+∠C=220°,F为⊙O上异于E、D的一动点,则∠EFD= .
如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.
(1)求抛物线的解析式;
(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;
(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.
如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为_____.
为了解某小区家庭使用垃圾袋的情况,小亮随机调查了该小区10户家庭一周垃圾袋的使用量,结果如下:7,9,11,8,7,14,10,8,9,7(单位:个),关于这组数据下列结论正确的是( )
A. 极差是6 B. 众数是7 C. 中位数是8 D. 平均数是10
如图(13),矩形中,、、,射线过点且与轴平行,点、分别是和轴正半轴上动点,满足.
(1)①点的坐标是 ;②= 度;③当点与点重合时,点的坐标为 ;
(2)设的中点为,与线段相交于点,连结,如图(13)乙所示,若为等腰三角形,求点的横坐标;
(3)设点的横坐标为,且,与矩形的重叠部分的面积为,试求与的函数关系式.
《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出钱,会多钱;每人出钱,又会差钱,问人数、物价各是多少?设合伙人数为人,物价为钱,以下列出的方程组正确的是
A. B. C. D.
100件外观相同的产品中有5件不合格,现从中任意抽取1件进行检测,抽到不合格产品的概率是