题目内容
Rt△ABC中,∠BAC=90°,AB=AC=2.以AC为一边,在△ABC外部作等腰直角三角形ACD,则线段BD的长为 .
【答案】分析:分情况讨论,①以A为直角顶点,向外作等腰直角三角形DAC;②以C为直角顶点,向外作等腰直角三角形ACD;③以AC为斜边,向外作等腰直角三角形ADC.分别画图,并求出BD.
解答:解:①以A为直角顶点,向外作等腰直角三角形DAC,

∵∠DAC=90°,且AD=AC,
∴BD=BA+AD=2+2=4;
②以C为直角顶点,向外作等腰直角三角形ACD,

连接BD,过点D作DE⊥BC,交BC的延长线于E.
∵△ABC是等腰直角三角形,∠ACD=90°,
∴∠DCE=45°,
又∵DE⊥CE,
∴∠DEC=90°,
∴∠CDE=45°,
∴CE=DE=2×
=
,
在Rt△BAC中,BC=
=2
,
∴BD=
=
=2
;
③以AC为斜边,向外作等腰直角三角形ADC,

∵∠ADC=90°,AD=DC,且AC=2,
∴AD=DC=ACsin45°=2×
=
,
又∵△ABC、△ADC是等腰直角三角形,
∴∠ACB=∠ACD=45°,
∴∠BCD=90°,
又∵在Rt△ABC中,BC=
=2
,
∴BD=
=
=
.
故BD的长等于4或2
或
.
点评:分情况考虑问题,主要利用了等腰直角三角形的性质、勾股定理等知识.
解答:解:①以A为直角顶点,向外作等腰直角三角形DAC,
∵∠DAC=90°,且AD=AC,
∴BD=BA+AD=2+2=4;
②以C为直角顶点,向外作等腰直角三角形ACD,
连接BD,过点D作DE⊥BC,交BC的延长线于E.
∵△ABC是等腰直角三角形,∠ACD=90°,
∴∠DCE=45°,
又∵DE⊥CE,
∴∠DEC=90°,
∴∠CDE=45°,
∴CE=DE=2×
在Rt△BAC中,BC=
∴BD=
③以AC为斜边,向外作等腰直角三角形ADC,
∵∠ADC=90°,AD=DC,且AC=2,
∴AD=DC=ACsin45°=2×
又∵△ABC、△ADC是等腰直角三角形,
∴∠ACB=∠ACD=45°,
∴∠BCD=90°,
又∵在Rt△ABC中,BC=
∴BD=
故BD的长等于4或2
点评:分情况考虑问题,主要利用了等腰直角三角形的性质、勾股定理等知识.
练习册系列答案
相关题目