题目内容

如图,把矩形ABCD对折,设折痕为MN,再把B点叠在折痕上,得到Rt△ABE,沿着EB线折叠得到△AEF,若矩形的宽CD=4,△AEF的面积


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
A
分析:首先根据平行线等分线段定理得到BE=BF,再结合AB⊥EF得到AE=AF.只需再进一步得到有一个角是60度即可.根据折叠知∠B′AE=∠BAE,根据等腰三角形的三线合一得到∠BAE=∠BAF,从而得到∠EAF=60°,根据有一个角是60°的等腰三角形是等边三角形,进而求出面积即可.
解答:解:∵AD∥MN∥BC,AM=BM,
∴BE=BF,
又∠ABE=∠B′=90°,
∴AE=AF,
∴∠BAE=∠BAF.
根据折叠得∠B′AE=∠BAE,
∴∠B′AE=∠BAE=∠BAF=30°,
∴∠EAF=60°,
∴△EAF即为等边三角形.
∵矩形的宽CD=4,
∴AB=4,
tan30°=
即:=
解得:BF=
∴EF=
故△AEF的面积为:AB×EF=×4×=
故选:A.
点评:此题主要考查了翻折变换的性质、等边三角形的判定方法,平行线等分线段定理、线段垂直平分线的性质、等腰三角形的性质等知识点,得出△EAF即为等边三角形是解题关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网