题目内容
【题目】如图,在等腰RtABC中,
,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是( )
![]()
A.
B. 2
C.
D. 4![]()
【答案】B
【解析】分析:取AB的中点O、AC的中点E、BC的中点F,连结OC、OP、OM、OE、OF、EF,如图,利用等腰直角三角形的性质得到AB=
BC=8,则OC=
AB=4,OP=
AB=4,再根据等腰三角形的性质得OM⊥PC,则∠CMO=90°,于是根据圆周角定理得到点M在以OC为直径的圆上,由于点P点在A点时,M点在E点;点P点在B点时,M点在F点,则利用四边形CEOF为正方得到EF=OC=4,所以M点的路径为以EF为直径的半圆,然后根据圆的周长公式计算点M运动的路径长.
详解:取AB的中点O、AC的中点E、BC的中点F,连结OC、OP、OM、OE、OF、EF,如图,∵在等腰Rt△ABC中,AC=BC=4
,∴AB=
BC=8,∴OC=
AB=4,OP=
AB=4.
∵M为PC的中点,∴OM⊥PC,∴∠CMO=90°,∴点M在以OC为直径的圆上,点P点在A点时,M点在E点;点P点在B点时,M点在F点,易得四边形CEOF为正方形,EF=OC=4,∴M点运动的路径为以EF为直径的半圆,∴点M运动的路径长=
4π=2π. 故选B.
![]()
练习册系列答案
相关题目