题目内容

在?ABCD中,AC与BD相交于点O,∠AOB=45°,BD=2,将△ABC沿直线AC翻折后,点B落在点B′处,那么DB′的长为
 
分析:利用折叠的性质,即全等的性质可得AOB′=45°,所以∠BOB′=∠DOB′=90°,再解直角三角形即可.
解答:解:已知折叠就是已知图形的全等,
所以△ABC≌△AB′C,
则OB=OB′=
1
2
BD=1,
因为∠AOB=45°,
则AOB′=45°,
所以∠BOB′=∠DOB′=90°,
在Rt△DOB′中,OD=OB′=1,
利用勾股定理解得DB′=
2

故填
2
点评:已知折叠问题就是已知图形的全等,折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.勾股定理也是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网