题目内容
先化简,再求值:已知,试求的值.
如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:
①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(-1,0);⑤当1<x<4时,有y2<y1,
其中正确的是( )
A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤
如图1,四边形ABCD是菱形,AD=5,过点D作AB的垂线DH,垂足为H,交对角线AC于M,连接BM,且AH=3.
(1)求证:DM=BM;
(2)求MH的长;
(3)如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式;
(4)在(3)的条件下,当点P在边AB上运动时是否存在这样的 t值,使∠MPB与∠BCD互为余角,若存在,则求出t值,若不存,在请说明理由.
如图,将边长都为cm的正方形按如图所示摆放,点A1、A2、…、An分别是正方形的中心,则2017个这样的正方形重叠部分的面积和为_________.
在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同,小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在0.15左右,则口袋中红色球可能有__________个.
已知三角形三边的长分别为cm,cm,cm,则它的周长为_____cm.
若与互为倒数,则( )
A. a=b-1 B. a=b+1 C. a+b=1 D. a+b=-1
若a、b互为相反数,c、d互为倒数,m的绝对值为2,则代数式m2﹣cd+的值为_____.
定义:对角线互相垂直的凸四边形叫做“垂直四边形”.
(1)理【解析】
如图1,已知四边形ABCD是“垂直四边形”,对角线AC,BD交于点O,AC=8,BD=7,求四边形ABCD的面积.
(2)探究:
小明对 “垂直四边形”ABCD(如图1)进行了深入探究,发现其一组对边的平方和等于另一组对边的平方和.即.你认为他的发现正确吗?试说明理由.
(3)应用:
① 如图2,在△ABC中, ,AC=6,BC=8,动点P从点A出发沿AB方向以每秒5个单位的速度向点B匀速运动,同时动点Q从点C出发沿CA方向以每秒6个单位的速度向点A匀速运动,运动时间为t秒(),连结CP,BQ,PQ.当四边形BCQP是“垂直四边形”时,求t的值.
② 如图3,在△ABC中,,AB=3AC,分别以AB,AC为边向外作正方形ABDE和正方形ACFG,连结EG.请直接写出线段EG与BC之间的数量关系.