题目内容
如图所示是一个长方形.
(1)根据图中尺寸大小,用含x的代数式表示阴影部分的面积;
(2)若 求的值.
我们给出如下定义:在平面直角坐标系xOy中,如果一条抛物线平移后得到的抛物线经过原抛物线的顶点,那么这条抛物线叫做原抛物线的过顶抛物线.
如下图,抛物线F2都是抛物线F1的过顶抛物线,设F1的顶点为A,F2的对称轴分别交F1、F2于点D、B,点C是点A关于直线BD的对称点.
(1)如图1,如果抛物线y=x 2的过顶抛物线为y=ax2+bx,C(2,0),那么
①a= ,b= .
②如果顺次连接A、B、C、D四点,那么四边形ABCD为( )
A.平行四边形 B.矩形 C.菱形 D.正方形
(2)如图2,抛物线y=ax2+c的过顶抛物线为F2,B(2,c-1).求四边形ABCD的面积.
(3)如果抛物线的过顶抛物线是F2,四边形ABCD的面积为,请直接写出点B的坐标.
如图,在长为100 m,宽为80 m的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644m2,则道路的宽应为多少米?设道路的宽为x m,则可列方程为 ( )
A. 100×80-100x-80x=7644 B. (100-x)(80-x)+x2=7644
C. (100-x)(80-x)=7644 D. 100x+80x-x2=7644
已知 则( )
A. 17 B. 72 C. 12 D. 36
在中,分式的个数是( )
A. 2 B. 3 C. 4 D. 5
计算:
“十一”期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元,设该电器的成本价为x元,根据题意,下面所列方程正确的是( )
A. x·(1+30%)×80%=2 080 B. x·30%·80%=2 080
C. 2 080×30%×80%=x D. x·30%=2 080×80%
如图,在平行四边形ABCD中,△ABD是等边三角形,BD=10,且两个顶点B、D分别在x轴,y轴上滑动,连接OC,则OC的最小值是_________。
如图,在平面直角坐标系中,直线AB与y轴交于点A,与x轴交于点B,且∠BAO=30°,现将△OAB沿直线AB翻折,得到△CAB. 连接OC交AB于点D.
(1)求证:AD⊥OC,OD=OA ;
(2)若Rt△AOB的斜边AB=,则OB=_____;OA=_____;点C的坐标为_______;
(3)在(2)的条件下,动点F从点O出发,以2个单位长度/秒的速度沿折线O﹣A﹣C向终点C运动,设△FOB的面积为S(S>0),点F的运动时间为t秒,求S与t的关系式,并直接写出t的取值范围;
(4)在(3)的条件下,过点B作BE⊥x轴,交AC于点E,在动点F的运动过程中,当t为何值时,△BEF是以BE为腰的等腰三角形?