题目内容
供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达.已知抢修车的速度是摩托车的1.5倍,求这两种车的速度?
已知一元二次方程x2﹣4x﹣3=0的两根为m,n,则m2﹣mn+n2= .
“为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:≈1.41,≈1.73)
下列说法正确的是( )
A.掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件
B.“直角三角形三条边中垂线的交点是斜边的中点”这是必然事件
C.“明天降雨的概率为”表示明天有半天都在降雨
D.了解一批电视机的使用寿命,适合用普查的方法
阅读发现:(1)如图①,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,AB=BC=3,BD=BE=1,连结CD,AE.易证:△BCD≌△BAE.(不需要证明)
提出问题:(2)在(1)的条件下,当BD∥AE时,延长CD交AE于点F,如图②,求AF的长.
解决问题:(3)如图③,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠BAC=∠DEB=30°,连结CD,AE.当∠BAE=45°时,点E到AB的距离EF的长为2,求线段CD的长为 .
一个扇形的圆心角为60°,半径是10cm,则这个扇形的弧长是 cm.
一元二次方程x2﹣4x+2=0的根的情况是( )
A.有两个相等的实数根
B.有两个不相等的实数根
C.只有一个实数根
D.没有实数根
矩形纸片ABCD中,AD=4cm,AB=10cm,按如图方式折叠,使点B与点D重合,折痕为EF,则DE= cm.
如图,Rt△ABC中,∠C=90°,AB=10,AC=8,E是AC上一点,AE=5,ED⊥AB于D.
(1)求证:△ACB∽△ADE;
(2)求AD的长度.