题目内容

精英家教网如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DEFG是正方形.若DE=2cm,则AC的长为(  )
A、3
3
cm
B、4cm
C、2
3
cm
D、2
5
cm
分析:根据三角形的中位线定理可得出BC=4,由AB=AC,可证明BG=CF=1,由勾股定理求出CE,即可得出AC的长.
解答:解:∵点D、E分别是边AB、AC的中点,
∴DE=
1
2
BC,
∵DE=2cm,
∴BC=4cm,
∵AB=AC,四边形DEFG是正方形.
∴△BDG≌△CEF,
∴BG=CF=1,
∴EC=
5

∴AC=2
5
cm.
故选D.
点评:本题考查了相似三角形的判定、勾股定理、等腰三角形的性质以及正方形的性质,是基础题,比较简单.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网