题目内容


阅读材料:如图1,在△AOB中,∠O=90°,OA=OB,点P在AB边上,PE⊥OA于点E,PF⊥OB于点F,则PE+PF=OA.(此结论不必证明,可直接应用)

(1)【理解与应用】

如图2,正方形ABCD的边长为2,对角线AC,BD相交于点O,点P在AB边上,PE⊥OA于点E,PF⊥OB于点F,则PE+PF的值为  

(2)【类比与推理】

如图3,矩形ABCD的对角线AC,BD相交于点O,AB=4,AD=3,点P在AB边上,PE∥OB交AC于点E,PF∥OA交BD于点F,求PE+PF的值;

(3)【拓展与延伸】

如图4,⊙O的半径为4,A,B,C,D是⊙O上的四点,过点C,D的切线CH,DG相交于点M,点P在弦AB上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH=30°时,PE+PF是否为定值?若是,请求出这个定值;若不是,请说明理由.


解:(1)如图2,

∵四边形ABCD是正方形,

∴OA=OB=OC=OD,∠ABC=∠AOB=90°.

∵AB=BC=2,

∴AC=2

∴OA=

∵OA=OB,∠AOB=90°,PE⊥OA,PF⊥OB,

∴PE+PF=OA=

(2)如图3,

∵四边形ABCD是矩形,

∴OA=OB=OC=OD,∠DAB=90°.

∵AB=4,AD=3,

∴BD=5.

∴OA=OB=OC=OD=

∵PE∥OB,PF∥AO,

∴△AEP∽△AOB,△BFP∽△BOA.

==1.

+=1.

∴EP+FP=

∴PE+PF的值为

(3)当∠ADG=∠BCH=30°时,PE+PF是定值.

理由:连接OA、OB、OC、OD,如图4.

∵DG与⊙O相切,

∴∠GDA=∠ABD.

∵∠ADG=30°,

∴∠ABD=30°.

∴∠AOD=2∠ABD=60°.

∵OA=OD,

∴△AOD是等边三角形.

∴AD=OA=4.

同理可得:BC=4.

∵PE∥BC,PF∥AD,

∴△AEP∽△ACB,△BFP∽△BDA.

==1.

=1.

∴PE+PF=4.

∴当∠ADG=∠BCH=30°时,PE+PF=4.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网