题目内容
设a<0,且
,则|x+1|-|x-2|=________.
-3
分析:根据绝对值的意义求出x的范围,根据x的范围去掉绝对值符号得到-x-1-(-x+2),化简即可求出答案.
解答:∵a<0,且
,
∴a<0,x≤-1,
∴|x+1|-|x-2|=-x-1-(-x+2),
=-3,
故答案为:-3.
点评:本题考查学生对绝对值的意义的理解和运用,关键是根据x的范围去掉所求代数式的绝对值符号.
分析:根据绝对值的意义求出x的范围,根据x的范围去掉绝对值符号得到-x-1-(-x+2),化简即可求出答案.
解答:∵a<0,且
∴a<0,x≤-1,
∴|x+1|-|x-2|=-x-1-(-x+2),
=-3,
故答案为:-3.
点评:本题考查学生对绝对值的意义的理解和运用,关键是根据x的范围去掉所求代数式的绝对值符号.
练习册系列答案
相关题目