题目内容
如图,在矩形ABCD中,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处.则BC:AB的值为 。
![]()
考点:翻折变换(折叠问题)。
解答:解:连接CC′,
∵将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处。
∴EC=EC′,
∴∠EC′C=∠ECC′,
∵∠DC′C=∠ECC′,
∴∠EC′C=∠DC′C,
∴得到CC′是∠EC'D的平分线,
∵∠CB′C′=∠D=90°,
∴CB′=CD,
又∵AB′=AB,
所以B′是对角线AC中点,
即AC=2AB,
所以∠ACB=30°,
∴cot∠ACB=cot30°=
,
BC:AB的值为:
。
故答案为:
。
![]()
练习册系列答案
相关题目