题目内容
同学们,我们曾经研究过n×n的正方形网格,得到了网格中正方形的总数的表达式为
.但n为100时,应如何计算正方形的具体个数呢?下面我们就一起来探究并解决这个问题.首先,通过探究我们已经知道![]()
时,我们可以这样做:
(1)观察并猜想:
=(1+0)×1+(1+1)×2=l+0×1+2+1×2=(1+2)+(0×1+1×2)
=(1+0)×1+(1+1)×2+(l+2)×3
=1+0×1+2+1×2+3+2×3
=(1+2+3)+(0×1+1×2+2×3)
=(1+0)×1+(1+1)×2+(l+2)×3+ ___________
=1+0×1+2+1×2+3+2×3+ ___________
=(1+2+3+4)+(___________)
…
(2)归纳结论:[来源:学*科*网Z*X*X*K]
=(1+0)×1+(1+1)×2+(1+2)×3+…[1+(n-l)]n
=1+0×1+2+1×2+3+2×3+…+n+(n-1)×n
=(___________)+[ ___________]
= ___________+ ___________
=
×___________
(3 )实践应用:
通过以上探究过程,我们就可以算出当n为100时,正方形网格中正方形的总个数是_________。
【答案】
解:(1)观察并猜想:(1+3)×4;4+3×4;0×1+1×2+2×3+3×4;
(2)归纳结论:1+2+3+…+n;0×1+1×2+2×3+…+(n-1)n;
n(n+1);
n(n+1)(n-1);n(n+1)(2n+1);
(3)实践应用:338350.
【解析】略
练习册系列答案
相关题目