题目内容
如图,在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=4(1)求BC的长;
(2)当MN∥AB时,求t的值;
(3)试探究:t为何值时,△MNC为等腰三角形.
【答案】分析:(1)作梯形的两条高,根据直角三角形的性质和矩形的性质求解;
(2)平移梯形的一腰,根据平行四边形的性质和相似三角形的性质求解;
(3)因为三边中,每两条边都有相等的可能,所以应考虑三种情况.结合路程=速度×时间求得其中的有关的边,运用等腰三角形的性质和解直角三角形的知识求解.
解答:解:(1)如图①,过A、D分别作AK⊥BC于K,DH⊥BC于H,则四边形ADHK是矩形.
∴KH=AD=3.
在Rt△ABK中,AK=AB•sin45°=4
•
=4BK=AB•cos45°=4
=4.
在Rt△CDH中,由勾股定理得,HC=
=3.
∴BC=BK+KH+HC=4+3+3=10.
(2)如图②,过D作DG∥AB交BC于G点,则四边形ADGB是平行四边形.
∵MN∥AB,
∴MN∥DG.
∴BG=AD=3.
∴GC=10-3=7.
由题意知,当M、N运动到t秒时,CN=t,CM=10-2t.
∵DG∥MN,
∴∠NMC=∠DGC.
又∠C=∠C,
∴△MNC∽△GDC.
∴
,
即
.
解得,
.

(3)分三种情况讨论:
①当NC=MC时,如图③,即t=10-2t,
∴
.

②当MN=NC时,如图④,过N作NE⊥MC于E.
解法一:
由等腰三角形三线合一性质得
EC=
MC=
(10-2t)=5-t.
在Rt△CEN中,cosC=
=
,
又在Rt△DHC中,cosC=
,
∴
.
解得t=
.
解法二:
∵∠C=∠C,∠DHC=∠NEC=90°,
∴△NEC∽△DHC.
∴
,
即
.
∴t=
.
③当MN=MC时,如图⑤,过M作MF⊥CN于F点.FC=
NC=
t.
解法一:(方法同②中解法一)
,
解得
.
解法二:
∵∠C=∠C,∠MFC=∠DHC=90°,
∴△MFC∽△DHC.
∴
,
即
,
∴
.
综上所述,当t=
、t=
或t=
时,△MNC为等腰三角形.
点评:注意梯形中常见的辅助线:平移一腰、作两条高.构造等腰三角形的时候的题目,注意分情况讨论.此题的知识综合性较强,能够从中发现平行四边形、等腰三角形等,根据它们的性质求解.
(2)平移梯形的一腰,根据平行四边形的性质和相似三角形的性质求解;
(3)因为三边中,每两条边都有相等的可能,所以应考虑三种情况.结合路程=速度×时间求得其中的有关的边,运用等腰三角形的性质和解直角三角形的知识求解.
解答:解:(1)如图①,过A、D分别作AK⊥BC于K,DH⊥BC于H,则四边形ADHK是矩形.
∴KH=AD=3.
在Rt△ABK中,AK=AB•sin45°=4
在Rt△CDH中,由勾股定理得,HC=
∴BC=BK+KH+HC=4+3+3=10.
(2)如图②,过D作DG∥AB交BC于G点,则四边形ADGB是平行四边形.
∵MN∥AB,
∴MN∥DG.
∴BG=AD=3.
∴GC=10-3=7.
由题意知,当M、N运动到t秒时,CN=t,CM=10-2t.
∵DG∥MN,
∴∠NMC=∠DGC.
又∠C=∠C,
∴△MNC∽△GDC.
∴
即
解得,
(3)分三种情况讨论:
①当NC=MC时,如图③,即t=10-2t,
∴
②当MN=NC时,如图④,过N作NE⊥MC于E.
解法一:
由等腰三角形三线合一性质得
EC=
在Rt△CEN中,cosC=
又在Rt△DHC中,cosC=
∴
解得t=
解法二:
∵∠C=∠C,∠DHC=∠NEC=90°,
∴△NEC∽△DHC.
∴
即
∴t=
③当MN=MC时,如图⑤,过M作MF⊥CN于F点.FC=
解法一:(方法同②中解法一)
解得
解法二:
∵∠C=∠C,∠MFC=∠DHC=90°,
∴△MFC∽△DHC.
∴
即
∴
综上所述,当t=
点评:注意梯形中常见的辅助线:平移一腰、作两条高.构造等腰三角形的时候的题目,注意分情况讨论.此题的知识综合性较强,能够从中发现平行四边形、等腰三角形等,根据它们的性质求解.
练习册系列答案
相关题目
| A、3cm | B、7cm | C、3cm或7cm | D、2cm |