题目内容

如图,△ABC中,∠A=45°,I是内心,则∠BIC=


  1. A.
    112.5°
  2. B.
    112°
  3. C.
    125°
  4. D.
    55°
A
分析:根据三角形内角和定理即可求得∠IBC+∠ICB的度数,然后根据内心的定义即可求得∠IBC+∠ICB,然后根据三角形内角和定理即可求解.
解答:∵∠A=45°,
∴∠ABC+∠ACB=180°-45°=135°.
∵点I是△ABC的内心,
∴∠IBC=∠ABC,∠ICB=∠ACB,
∴∠IBC+∠ICB=(∠ABC+∠ACB)=67.5°,
∴∠BIC=180°-(∠IBC+∠ICB)=112.5°.
故答案是:112.5°.
点评:此题主要考查了三角形的内心的计算,正确理解∠IBC+∠ICB=(∠ABC+∠ACB)是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网