题目内容
如图,小明在A时测得某树的影长为2米,B时又测得该树的影长为8米,若两次日照的光线互相垂直,则树的高度为___________米.
分解因式: = .
如图,以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若大圆半径为10cm,小圆半径为6cm,求弦AB的长
如图,在平面直角坐标系中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C的坐标为(0,),点M是抛物线C2:(<0)的顶点.
(1)求A、B两点的坐标;
(2)当△BDM为直角三角形时,求的值.
(3)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;
先化简,再求值:,其中
函数的自变量x的取值范围是 .
如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上,已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10 cm处,铁片与直尺的唯一公共点A落在直尺的14 cm处,铁片与三角尺的唯一公共点为B,下列说法错误的是( )
A.圆形铁片的半径是4 cm B.四边形AOBC为正方形
C.弧AB的长度为4πcm D.扇形OAB的面积是4πcm²
如图,分别以四边形ABCD的四个顶点为圆心,以3为半径画弧,则图中四个阴影部分面积和为 .
我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示,BC∥AD,斜坡AB=40米,坡角∠BAD=60°,
(1)求山坡高度;
(2)为防夏季因暴雨引发山体滑坡,保障安全,学校决定对山坡进行改造,经地质人员勘测,当坡角不超过45°时,可确保山体不滑坡,改造时保持坡脚A不动,从坡顶B沿BC削进到E处,问BE至少是多少米(结果保留根号)?