题目内容
已知:x2-3x=1,求下列各式的值.
(1)x2+
(2)x4-6x3+10x2-3x+6.
(1)x2+
| 1 | x2 |
(2)x4-6x3+10x2-3x+6.
分析:(1)先根据x2-3x=1,求出x的值,再代入进行计算即可;
(2)先把要求的式子进行因式分解,再把x2-3x=1即可求出答案.
(2)先把要求的式子进行因式分解,再把x2-3x=1即可求出答案.
解答:解:(1)∵x2-3x=1,
∴x1=
,x2=
,
∴当x1=
时,x2+
=
+
=11;
当x2=
时,x2+
=
+
=11;
(2)∵x2-3x=1,
∴x4-6x3+10x2-3x+6
=x4-6x3+9x2+x2-3x+6
=x4-6x3+9x2+7
=x2(x2-6x+9)+7
=x2(1-3x+9)+7
=x2-3x3+9x2+7
=-3x3+10x2+7
=-x(x2-3x+x2-3x+x2-3x-x)+7
=-x(3-x)+7
=x2-3x+7=1+7=8;
∴x1=
3+
| ||
| 2 |
3-
| ||
| 2 |
∴当x1=
3+
| ||
| 2 |
| 1 |
| x2 |
11+3
| ||
| 2 |
11-3
| ||
| 2 |
当x2=
3-
| ||
| 2 |
| 1 |
| x2 |
11-3
| ||
| 2 |
11+3
| ||
| 2 |
(2)∵x2-3x=1,
∴x4-6x3+10x2-3x+6
=x4-6x3+9x2+x2-3x+6
=x4-6x3+9x2+7
=x2(x2-6x+9)+7
=x2(1-3x+9)+7
=x2-3x3+9x2+7
=-3x3+10x2+7
=-x(x2-3x+x2-3x+x2-3x-x)+7
=-x(3-x)+7
=x2-3x+7=1+7=8;
点评:此题考查了因式分解的应用,解题的关键是把要求的式子进行因式分解,用到的知识点是提公因式法、公式法.
练习册系列答案
相关题目