题目内容
在一个不透明的布袋中装有3个白球和5个红球,它们除颜色不同外,其余均相同,从中随机摸出一个球,摸到红球的概率是 ( )
A. B. C. D.
(10分)四边形ABCD中,∠B+∠D=180°,对角线AC平分∠BAD.
(1)如图①,若∠DAB=120°,且∠B=90°,试探究边AD、AB与对角线AC的数量关系并说明理由.
(2)如图②,若将(1)中的条件“∠B=90°”去掉,(1)中的结论是否成立?请说明理由.
(3)如图③,若∠DAB=90°,探究边AD、AB与对角线AC的数量关系并说明理由.
甲校女生占全校总人数的54%,乙校女生占全校总人数的50%,则女生人数( )
A. 甲校多于乙校 B. 甲校少于乙校
C. 不能确定 D. 两校一样多
如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为 .
已知一圆锥的侧面展开图的面积为15πcm2,母线长为5 cm,则圆锥的高为________cm.
如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.
(1)求证:∠A=∠AEB;
(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形.
如图,在⊙O的内接四边形ABCD中,点E在DC的延长线上.若∠A=50°,则∠BCE=________.
李老师奖励在数学竞赛中的优胜者,给小明80元去购买奖品笔记本和钢笔共30件,已知每本笔记本2元,每支钢笔5元,则小明最多能买多少支钢笔?
如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠BAC的平分线AE交CD于点F,交BC于点E,过点E作EG⊥AB于G,连结GF.求证:四边形CFGE是菱形.