题目内容

如图,已知Rt△ABC,∠ABC=90°,以直角边AB为直径作⊙O,交斜边AC于点D,连接BD.
(1)若AD=3,BD=4,求边BC的长;
(2)取BC的中点E,连接ED,试证明ED与⊙O相切.

【答案】分析:(1)根据勾股定理易求AB的长;根据△ABD∽△ACB得比例线段可求BC的长.
(2)连接OD,证明DE⊥OD.
解答:(1)解:∵AB为直径,
∴∠ADB=90°,即BD⊥AC.
在RT△ADB中,∵AD=3,BD=4,
∴由勾股定理得AB=5.
∵∠ABC=90°,BD⊥AC,
∴△ABD∽△ACB,
=
=
∴BC=


(2)证明:连接OD,
∵OD=OB,
∴∠ODB=∠OBD;
又∵E是BC的中点,BD⊥AC,
∴DE=BE,
∴∠EDB=∠EBD.
∴∠ODB+∠EDB=∠OBD+∠EBD=90°,
即∠ODE=90°,
∴DE⊥OD.
∴ED与⊙O相切.
点评:①直角三角形斜边上的高分得的两个三角形与原三角形相似;
②证过圆上一点的直线是切线,常作的辅助线是连接圆心和该点,证直线和半径垂直.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网