题目内容
如图,a∥b,PA⊥PB,∠1=35°,则∠2的度数是 .
如图,矩形ABCD中,AE⊥BD于点E,CF平分∠BCD,交EA的延长线于点F,且BC=4,CD=2,给出下列结论:①∠BAE=∠CAD;②∠DBC=30°;③AE=;④AF=,其中正确结论的个数有( )
A.1个 B.2个 C.3个 D.4个32
计算:.
已知抛物线c1的顶点为A(﹣1,4),与y轴的交点为D(0,3).
(1)求c1的解析式;
(2)若直线l1:y=x+m与c1仅有唯一的交点,求m的值;
(3)若抛物线c1关于y轴对称的抛物线记作c2,平行于x轴的直线记作l2:y=n.试结合图形回答:当n为何值时,l2与c1和c2共有:①两个交点;②三个交点;③四个交点;
(4)若c2与x轴正半轴交点记作B,试在x轴上求点P,使△PAB为等腰三角形.
先化简,再从不等式2x﹣1<6的正整数解中选一个适当的数代入求值.
如图是一个正方体的表面展开图,则原正方体中与“美”字所在面相对的面上标的字是( )
A.丽 B.张 C.家 D.界
(本题满分10分)
问题背景:已知的顶点在的边所在直线上(不与,重合).交所在直线于点,交所在直线于点.记的面积为,的面积为.
(1)初步尝试:如图①,当是等边三角形,,,且,时,则 ;
(2)类比探究:在(1)的条件下,先将点沿平移,使,再将绕点旋转至如图②所示位置,求的值;
(3)延伸拓展:当是等腰三角形时,设.
(I)如图③,当点在线段上运动时,设,,求的表达式(结果用,和的三角函数表示).
(II)如图④,当点在的延长线上运动时,设,,直接写出的表达式,不必写出解答过程.
解分式方程,可知方程的解为
A. B. C. D.无解
计算: