题目内容

5.在平面直角坐标系xOy中,直线y=2x+1与双曲线y=$\frac{k}{x}$的一个交点为A(m,-3).
(1)求双曲线的表达式;
(2)过动点P(n,0)(n<0)且垂直于x轴的直线与直线y=2x+1和双曲线y=$\frac{k}{x}$的交点分别为B,C,当点B位于点C上方时,直接写出n的取值范围.

分析 (1)根据点A的纵坐标利用一次函数图象上点的坐标特征,可求出点A的坐标,根据点A的坐标利用待定系数法,即可求出双曲线的表达式;
(2)依照题意画出函数图象,根据两函数图象的上下位置关系,即可找出n的取值范围.

解答 解:(1)当y=2x+1=-3时,x=-2,
∴点A的坐标为(-2,-3),
将点A(-2,-3)代入y=$\frac{k}{x}$中,
-3=$\frac{k}{-2}$,解得:k=6,
∴双曲线的表达式为y=$\frac{6}{x}$.
(2)依照题意,画出图形,如图所示.
观察函数图象,可知:当-2<x<0时,直线y=2x+1在双曲线y=$\frac{6}{x}$的上方,
∴当点B位于点C上方时,n的取值范围为-2<x<0.

点评 本题考查了反比例函数与一次函数的交点问题、一次函数图象上点的坐标特征以及待定系数法求反比例函数解析式,解题的关键是:(1)利用一次函数图象上点的坐标特征求出点A的坐标;(2)根据两函数图象的上下位置关系,找出n的取值范围.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网