题目内容
方程x2+3=4x用配方法解时,应先化成( )
A.(x﹣2)2=7 B.(x+2)2=1 C.(x+2)2=2 D.(x﹣2)2=1
如图,在△ABC中,AB=AC,∠DAC是△ABC的一个外角.
实验与操作:
根据要求进行尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法)
(1)作∠DAC的平分线AM;
(2)作线段AC的垂直平分线,与AM交于点F,与BC边交于点E,连接AE,CF.
猜想并证明:
判断四边形AECF的形状并加以证明.
如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )
A. B. C. D.
在平面直角坐标系中,△ABC的坐标分别是A(﹣1,2),B(﹣2,0),C(﹣1,1),若以原点O为位似中心,将△ABC放大到原来的4倍得到△△A′B′C′,那么落在第四象限的A′的坐标是 .
如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,且∠OBC=45°,则下列各式成立的是( )
A.b﹣c﹣1=0 B.b+c﹣1=0 C.b﹣c+1=0 D.b+c+1=0
如图,AB为⊙O的直径,点C为⊙O上一动点,点D为弦AC的中点.
(1)当=2,求∠BAC的度数;
(2)若AB=4,当点C在⊙O上运动时,点D始终在一个圆上,请你确定这个圆的圆心以及这个圆的半径.
如图,AB是⊙O的直径,∠E=25°,∠DBC=50°,则∠CBE= .
如图1,正方形ABCD的边AD在y轴上,抛物线y=a(x﹣2)2﹣1经过点A、B,与x相交于点E、F,且其顶点M在CD上.
(1)请直接写出点A的坐标 ,并写出a的值 ;
(2)若点P是抛物线上一动点(点P不与点A、点B重合),过点P作y轴的平行线l与直线AB交于点G,与直线BD交于点H,如图2.
①当线段PH=2GH时,求点P的坐标;
②当点P在直线BD下方时,点K在直线BD上,且满足△KPH∽△AEF,求△KPH周长的最大值.
已知线段AB=10,点C是线段AB上的黄金分割点(AC>BC),则AC长是 (精确到0.01).