ÌâÄ¿ÄÚÈÝ
Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖªRt¡÷AOBµÄÁ½ÌõÖ±½Ç±ß0A¡¢08·Ö±ðÔÚyÖáºÍxÖáÉÏ£¬²¢ÇÒOA¡¢OBµÄ³¤·Ö±ðÊÇ·½³Ìx2¡ª7x+12=0µÄÁ½¸ù(OA<0B)£¬¶¯µãP´ÓµãA¿ªÊ¼ÔÚÏß¶ÎAOÉÏÒÔÿÃël¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÏòµãOÔ˶¯£»Í¬Ê±£¬¶¯µãQ´ÓµãB¿ªÊ¼ÔÚÏß¶ÎBAÉÏÒÔÿÃë2¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÏòµãAÔ˶¯£¬ÉèµãP¡¢QÔ˶¯µÄʱ¼äΪtÃ룮
(1)ÇóA¡¢BÁ½µãµÄ×ø±ê¡£
(2)Çóµ±tΪºÎֵʱ£¬¡÷APQÓë¡÷AOBÏàËÆ£¬²¢Ö±½Óд³ö´ËʱµãQµÄ×ø±ê£®
(3)µ±t=2ʱ£¬ÔÚ×ø±êÆ½ÃæÄÚ£¬ÊÇ·ñ´æÔÚµãM£¬Ê¹ÒÔA¡¢P¡¢Q¡¢MΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐÎ?Èô´æÔÚ£¬ÇëÖ±½Óд³öMµãµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
![]()
£¨1£©A(0£¬3)£¬ B(4£¬0)£¨2£©t=
£¬Q£¨
£©£»t=
£¬Q£¨
£©£¨3£©´æÔÚ¡£M1£¨
£©£¬ M2£¨
£©£¬M3£¨
£©
¡¾½âÎö¡¿½â£º£¨1£©ÓÉx2£7 x +12=0½âµÃx1=3£¬x2=4¡£
¡ßOA£¼OB £¬¡àOA=3 , OB=4¡£¡àA(0£¬3)£¬ B(4£¬0)¡£
(2)ÓÉOA=3 , OB=4£¬¸ù¾Ý¹´¹É¶¨Àí£¬µÃAB=5¡£
ÓÉÌâÒâµÃ£¬AP=t, AQ=5£2t ¡£·ÖÁ½ÖÖÇé¿öÌÖÂÛ£º
¢Ùµ±¡ÏAPQ=¡ÏAOBʱ£¬Èçͼ1£¬
![]()
¡÷APQ¡×¡÷AOB¡£¡à
£¬¼´
½âµÃ t=
¡£¡àQ£¨
£©¡£
¢Úµ±¡ÏAQP=¡ÏAOBʱ£¬Èçͼ2£¬
![]()
¡÷APQ¡×¡÷ABO¡£¡à
£¬¼´
½âµÃ t=
¡£¡àQ£¨
£©¡£
£¨3£©´æÔÚ¡£M1£¨
£©£¬ M2£¨
£©£¬M3£¨
£©¡£
£¨1£©½â³öÒ»Ôª¶þ´Î·½³Ì£¬½áºÏOA£¼OB¼´¿ÉÇó³öA¡¢BÁ½µãµÄ×ø±ê¡£
£¨2£©·Ö¡ÏAPQ=¡ÏAOBºÍ¡ÏAQP=¡ÏAOBÁ½ÖÖÇé¿öÌÖÂÛ¼´¿É¡£
£¨3£©µ±t=2ʱ£¬Èçͼ£¬
![]()
OP=2£¬BQ=4£¬¡àP£¨0£¬1£©£¬Q£¨
£©¡£
ÈôÒÔA¡¢P¡¢Q¡¢MΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ¬Ôò
¢Ùµ±AQΪ¶Ô½ÇÏßʱ£¬µãM1µÄºá×ø±êÓëµãQµÄºá×ø±êÏàͬ£¬×Ý×ø±êΪ
¡£¡àM1£¨
£©¡£
¢Úµ±PQΪ¶Ô½ÇÏßʱ£¬µãM2µÄºá×ø±êÓëµãQµÄºá×ø±êÏàͬ£¬×Ý×ø±êΪ
¡£¡àM2£¨
£©¡£
¢Ûµ±APΪ¶Ô½ÇÏßʱ£¬µãQ¡¢M3¹ØÓÚAPµÄÖеã¶Ô³Æ¡£
ÓÉA(0£¬3)£¬P£¨0£¬1£©µÃAPµÄÖеã×ø±êΪ£¨0£¬2£©¡£
ÓÉQ£¨
£©µÃM3µÄºá×ø±êΪ
£¬×Ý×ø±êΪ
¡£¡àM3£¨
£©¡£
×ÛÉÏËùÊö£¬ÈôÒÔA¡¢P¡¢Q¡¢MΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ¬ÔòMµãµÄ×ø±êΪ
£¨
£©»ò£¨
£©»ò£¨
£©¡£