题目内容
【题目】如图,菱形ABCD的边长为4,∠BAD=120°,点E是AB的中点,点F是AC上的一动点,则EF+BF的最小值是( )![]()
A.4
B.2 ![]()
C.4 ![]()
D.2 ![]()
【答案】D
【解析】解:连接DB,DE,设DE交AC于M,连接MB,DF,延长BA,DH⊥BA于H,
∵四边形ABCD是菱形,
∴AC,BD互相垂直平分,
∴点B关于AC的对称点为D,
∴FD=FB,
∴FE+FB=FE+FD≥DE.
只有当点F运动到点M时,取等号(两点之间线段最短),
△ABD中,AD=AB,∠DAB=120°,
∴∠HAD=60°,
∵DH⊥AB,
∴AH=
AD,DH=
AD,
∵菱形ABCD的边长为4,E为AB的中点,
∴AE=2,AH=2,
∴EH=4,DH=2
,
在Rt△EHD中,DE=
=2
,
∴EF+BF的最小值为2
.
故选D.![]()
【考点精析】掌握菱形的性质是解答本题的根本,需要知道菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半.
练习册系列答案
相关题目