题目内容
【题目】如图,AB是⊙O的直径,点C是弧AB的中点,点D是⊙O外一点,AD=AB,AD交⊙O于F,BD交⊙O于E,连接CE交AB于G.
(1)证明:∠C=∠D;
(2)若∠BEF=140°,求∠C的度数;
(3)若EF=2,tanB=3,求CECG的值.
![]()
【答案】(1)见解析;(2)70°;(3)20.
【解析】
(1)先根据等边对等角得出∠B=∠D,即可得出结论;
(2)先判断出∠DFE=∠B,进而得出∠D=∠DFE,即可求出∠D=70°,即可得出结论;
(3)先求出BE=EF=2,进而求AE=6,即可得出AB,进而求出AC,再判断出△ACG∽△ECA,即可得出结论.
(1)∵AB=AD,
∴∠B=∠D,
∵∠B=∠C,
∴∠C=∠D;
(2)∵四边形ABEF是圆内接四边形,
∴∠DFE=∠B,
由(1)知,∠B=∠D,
∴∠D=∠DFE,
∵∠BEF=140°=∠D+∠DFE=2∠D,
∴∠D=70°,
由(1)知,∠C=∠D,
∴∠C=70°;
(3)如图,由(2)知,∠D=∠DFE,
∴EF=DE,
连接AE,OC,
∵AB是⊙O的直径,
∴∠AEB=90°,
∴BE=DE,
∴BE=EF=2,
在Rt△ABE中,tanB=
=3,
∴AE=3BE=6,根据勾股定理得,AB=
,
∴OA=OC=
AB=
,
∵点C是
的中点,
∴
,
∴∠AOC=90°,
∴AC=
OA=2
,
∵
,
∴∠CAG=∠CEA,
∵∠ACG=∠ECA,
∴△ACG∽△ECA,
∴
,
∴CECG=AC2=20.
练习册系列答案
相关题目