题目内容
已知a2+ab-b2=0,且a,b均为正数,先化简下面的代数式,再求值:| a2-b2 |
| (b-a)(b-2a) |
| 2a2-ab |
| 4a2-4ab+b2 |
分析:欲求值,但a、b的具体值未知,故化简后也不能直接代入.可以把a2+ab-b2=0看成是关于a的一元二次方程,用公式法求得a=
=
.又因为a,b均为正数,所以只取a=
b,即2a=(
-1)b.最后可以采取整体代换的方法求值.
-b±
| ||
| 2 |
-b±
| ||
| 2 |
| ||
| 2 |
| 5 |
解答:解:∵
+
=
+
=
+
=
,
解法一:∵a2+ab-b2=0,
∴a=
=
,
∵a,b均为正数,
∴只取a=
b,∴2a=(
-1)b,
∴原式=
=
=
=5+2
;
解法二:∵a2+ab-b2=0,且a,b均为正数,
∴(
)2+(
)-1=0,∴
=
(负值舍去),
∴
=
,
∴原式=
=
=5+2
.
| a2-b2 |
| (b-a)(b-2a) |
| 2a2-ab |
| 4a2-4ab+b2 |
=
| (a+b)(a-b) |
| (a-b)(2a-b) |
| a(2a-b) |
| (2a-b)2 |
=
| a+b |
| 2a-b |
| a |
| 2a-b |
| 2a+b |
| 2a-b |
解法一:∵a2+ab-b2=0,
∴a=
-b±
| ||
| 2 |
-b±
| ||
| 2 |
∵a,b均为正数,
∴只取a=
| ||
| 2 |
| 5 |
∴原式=
(
| ||
(
|
| ||
|
| ||||
(
|
| 5 |
解法二:∵a2+ab-b2=0,且a,b均为正数,
∴(
| a |
| b |
| a |
| b |
| a |
| b |
-1±
| ||
| 2 |
∴
| a |
| b |
-1+
| ||
| 2 |
∴原式=
2•
| ||
2•
|
-1+
| ||
-1+
|
| 5 |
点评:本题为分式的化简求值题,但难点却在求a的值上,需要灵活运用公式法解一元二次方程.
练习册系列答案
相关题目