题目内容
如果x=-1是方程mx2+nx+p=0的根,则m-n+p= .
【答案】分析:一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值,即用这个数代替未知数所得式子仍然成立;把x=-1代入方程mx2+nx+p=0即可求得m-n+p的值.
解答:解:把x=-1代入方程mx2+nx+p=0,
得m×(-1)2+n×(-1)+p=0,
即m-n+p=0.
点评:本题考查的是一元二次方程的根即方程的解的定义.
解答:解:把x=-1代入方程mx2+nx+p=0,
得m×(-1)2+n×(-1)+p=0,
即m-n+p=0.
点评:本题考查的是一元二次方程的根即方程的解的定义.
练习册系列答案
相关题目