题目内容
1与0交替排列,组成下面形式的一串数101,10101,1010101,101010101,…
请你回答:在这串数中有多少个质数?并证明你的结论.
请你回答:在这串数中有多少个质数?并证明你的结论.
显然101是质数,假设有n个1的数为An,首先A1是一个质数,
当n≥2时An均为合数,当n为偶数时,显然An能被101整除,
当n为奇数时,An×11=111…1(共2n个1),再将它乘以9得999…9(共2n个9),即102n-1,即An=
,
即An=
=[
]×[
],
设
=a,
=b,显然b是整数,
而一个数被11整除的充要条件是奇偶位和的差能被11整除,
而10n+1的奇数位和为1,偶数位和也为1,所以能被11整除,
所以a也是一个不为1的整数,所以An不是质数,所以这串数中有101一个质数.
故答案为:1.
当n≥2时An均为合数,当n为偶数时,显然An能被101整除,
当n为奇数时,An×11=111…1(共2n个1),再将它乘以9得999…9(共2n个9),即102n-1,即An=
| 102n-1 |
| 99 |
即An=
| (10n+1)(10n-1) |
| 99 |
| (10n+1) |
| 11 |
| 10n-1 |
| 9 |
设
| (10n+1) |
| 11 |
| 10n-1 |
| 9 |
而一个数被11整除的充要条件是奇偶位和的差能被11整除,
而10n+1的奇数位和为1,偶数位和也为1,所以能被11整除,
所以a也是一个不为1的整数,所以An不是质数,所以这串数中有101一个质数.
故答案为:1.
练习册系列答案
相关题目