题目内容
下列说法正确的是( )
A. 面积相等的两个三角形一定全等 B. 平分弦的直径垂直于弦
C. 矩形的对角线互相平分且相等 D. 对角线互相垂直的四边形是菱形
材料阅读:对于一个圆和一个正方形给出如下定义:若圆上存在到此正方形四条边距离都相等的点,则称这个圆是该正方形的“等距圆”.
如图1,在平面直角坐标系xOy中,正方形ABCD的顶点A的坐标为(2,4),顶点C、D在x轴上,且点C在点D的左侧.
(1)当r=2时,在P1(2,0),P2(﹣4,2),P3(2,2),P4(2﹣2,0)中可以成为正方形ABCD的“等距圆”的圆心的是 ;
(2)若点P坐标为(﹣2,﹣1),则当⊙P的半径r= 时,⊙P是正方形ABCD的“等距圆”.试判断此时⊙P与直线BD的位置关系?并说明理由.
(3)如图2,在正方形ABCD所在平面直角坐标系xOy中,正方形EFGH的顶点F的坐标为(8,2),顶点E、H在y轴上,且点H在点E的上方.若⊙P同时为上述两个正方形的“等距圆”,且与BC所在直线相切,求⊙P的圆心P的坐标.
如图,动点P第1次从矩形的边上的(0,3)出发,沿所示方向运动,第2次碰到边上的点(3,0),每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P第10次碰到矩形的边时,点P的坐标为( )
A. (5,0) B. (0,3) C. (7,4) D. (8,3)
若关于的一元二次方程有两个不相等的实数根,则的取值范围是_____.
反比例函数的图象在第二、四象限,点A、B、C是图象上的三点,则的大小关系是( )
A. B. C. D.
的值是( )
A. ﹣6 B. 6 C. D.
某人的钱包内有10元、20元和50元的纸币各1张,从中随机取出2张纸币.
(1)求取出纸币的总额是30元的概率;
(2)求取出纸币的总额可购买一件51元的商品的概率.
如图,观察这个立体图形,它的左视图是( )
如图,在一张正六边形纸片中剪下两个全等的直角三角形(阴影部分),拼成一个四边形,若拼成的四边形的面积为2,则纸片的剩余部分拼成的五边形的面积为( )
A.5 B.6 C.8 D.10