题目内容

如图所示,D为△ABC中AC边上一点,AD=1,DC=2,AB=4,E是AB上一点,且△ABC的面积等于△DEC面积的2倍,则BE的长为


  1. A.
    数学公式
  2. B.
    1
  3. C.
    数学公式
  4. D.
    数学公式
B
分析:由已知AD=1,DC=2,得△DEC的面积等于△AED面积的2倍,又由△ABC的面积等于△DEC面积的2倍,得出△ABC的面积等于△BCE面积的4倍,计算△ABC的面积、△BCE面积用AB和EB为底,则两三角形的高相等,则得出BE与AB的关系,从而求出BE的长.
解答:已知AD=1,DC=2,
∴S△DEC=2S△AED
又由S△ABC=2S△DEC
∵S△BCE+S△AED+S△DEC=S△ABC
∴S△BCE+S△DEC+S△DEC=2S△DEC
∴S△BCE=S△DEC=S△ABC
设△ABC和△BCE的同高为h,
则:BE•h=×AB•h,
∴BE=AB=×4=1,
故选:B.
点评:此题考查的知识点是三角形的面积,关键是由已知先得出△DEC的面积等于△AED面积的2倍,然后由面积关系得出BE=AB.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网