题目内容
已知一元二次方程x2-4x-3=0的两根为m,n,则m2-mn+n2= .
25
某市为提倡节约用水,采取分段收费.若每户每月用水不超过20m3,每立方米收费2 元;若用水超过20m3,超过部分每立方米加收1元.小明家5月份交水费64 元,则他家该月用水 m3.
分式方程的解为:
A、1 B、2 C、 D、0
已知如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF
(1)求证:EF是⊙O的切线;
(2)若⊙O的半径为3,∠EAC=60°,求AD的长。
.已知抛物线y=ax2+bx+c(a>0)过(-2,0),(2,3)两点,那么抛物线的对称轴( )
A.只能是x=-1
B.可能是y轴
C.在y轴右侧且在直线x=2的左侧
D.在y轴左侧且在直线x=-2的右侧
如图,正方形ABCD与正方形A1B1C1D1关于某点中心对称.已知A,D1,D三点的坐标分别是(0,4),(0,3),(0,2).
(1)求对称中心的坐标;
(2)写出顶点B,C,B1,C1的坐标.
如图,已知二次函数L1:y=ax2-2ax+a+3(a>0)和二次函数L2:y=-a(x+1)2+1(a>0)图像的顶点分别为M,N,与y轴分别交于点E,F.
(1)函数y=ax2-2ax+a+3(a>0)的最小值为 ;当二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围是 ;
(2)当EF=MN时,求a的值,并判断四边形ENFM的形状(直接写出,不必证明);
(3)若二次函数L2的图象与x轴的右交点为A(m,0),当△AMN为等腰三角形时,求方程
-a(x+1)2+1=0的解.
如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是_________
计算:;